Post-Normal Science and Science in Crisis
(when science is not enough)

Andrew Wood
Conventional Science

- Hypothesis-driven investigations – securely funded, via individuals or small teams
- Example: Nobel-prizewinning work of Sir John Eccles
‘New’ science

- Large teams chasing small amounts of money: multi-institutional collaborations
- Driven by need to show ‘impact’

Palalle G. Tharushi Perera¹, Dominique R. T. Appadoo ², Samuel cheesesman ³, Jason V. Wandiyanto ¹, Denver Linklater ⁴, Chaitali DeKiWadia ⁵, Vi Khanh Truong ³, Mark J. Tobin ², Jitraporn VongsVivut², Olha Bazaka ³, Kateryna Bazaka ⁶, Rodney J. Croft ⁷, Russell J. Crawford ³ and Elena P. Ivanova ³, ⁸

1 Faculty Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia; pgperera@swin.edu.au (P.G.T.P); jvandiyanto@swin.edu.au (J.V.W.)
2 THz/ Far-Infrared Beamline, Australian Synchrotron, Clayton, VIC 3168, Australia; Dominique.APPADOO@ANSTO.gov.au (D.R.T.A.); tobinm@ANSTO.gov.au (M.J.T.); jitrapov@ANSTO.gov.au (J.V.)
3 School of Science, RMIT University, P.O. Box 2476, Melbourne, VIC 3001, Australia; s3741431@student.rmit.edu.au (S.C.); vi.khanh.truong@rmit.edu.au (V.K.T.); olga.bazaka@jcu.edu.au (O.B.); russell.crawford@rmit.edu.au (R.J.C.)
4 Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; dlinklater@swin.edu.au
5 RMIT Microscopy and Microanalysis Facility, College of Science, Engineering and Health, RMIT University, P.O. Box 2476, Melbourne, VIC 3001, Australia; chaitali.dekiwadia@rmit.edu.au
6 School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; kateryna.bazaka@qut.edu.au
7 School of Psychology, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; rcroft@uow.edu.au

May 2019
Post-normal Science compared to conventional (Funtowicz and Ravetz [1993]).

Normal rules of science do not necessarily apply “speaking in the name of science” to justify particular policy may not be appropriate.
Science in crisis (Saltelli & Funtowicz, 2017)

• 3 specific areas: reproducibility; governance; use for policy.
• Problems:
 – exponential growth in papers;
 – community with high ideals becoming a slave to objective measures;
 – where metrics predominate, practitioners tend to ‘game’ the system;
 – consensus fails where political pressures exist;
 – the myth of value-neutral nature of science.
• Reproducibility issue big talking point (Nature 533:452, 2016)
 – 77% of biologists reported being unable to reproduce someone else’s experiment and 60% were unable to reproduce their own.
Symptoms of science crisis

- Scientists resort to ‘questionable research practices’ including falsification of data (Fanelli, PlosOne, 2009)
- Lack of funding and stable positions for younger scientists lead to desperate measures (Nature, 2015)
- Time pressures lead to poor supervision/results checking by senior scientists (ibid)
- Cherry-picking (‘p-hacking’) of statistically significant results (Nature, 2016)